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a b s t r a c t

Point representation of fold shapes is useful, in particular, for classification of a large number of folds into
different geometric populations. The methods for shape analysis and point representation of asymmetric
folds are a few and tedious, although several methods exist for the analysis of the individual fold limbs,
or symmetric folds. This article gives a rapid method that uses the Bézier curve tool, available in any
common computer graphics software, for the analysis of a complete asymmetric fold and its point
representation in the two-dimensional frame.

The new method is based on the reduction of variables in the parametric equations of a cubic Bézier
curve. It makes the length of one Bézier handle zero, pins the end point of the other Bézier handle at the
origin of the XeY frame and drags its control point along the Y-axis to fit the Bézier curve on the given
asymmetric fold. A Cartesian plot between normalised length of the Bézier handle and the lift, i.e.,
difference between the heights of the two inflection points, gives the unique point that represents the
given asymmetric fold shape. We test the validity of the new method on several computer simulated
asymmetric folds and demonstrate its usefulness with the help of a natural example.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Structural geologists commonly require distinctions between
the shapes of minor folds that may occur in different parts of a large
scale fold or belong to one or more groups/domains. Although any
scheme that displays a large number of fold shapes on a single plot
is useful for classification of folds into different shape populations,
the point representation in the two-dimensional Cartesian frame is
ideal. This article proposes a Bézier curve method for the analysis
and point representation of asymmetric fold shapes. The new
method, an extension of the Bézier curve method for analysis of
individual fold limbs (Srivastava and Lisle, 2004), is rapid and easier
than existing methods for the fold shape analysis and the point
representation (Tripathi and Gairola, 1999; Bastida et al., 2005). All
the fold shapes referred in this article are the profile sections of
single folded surfaces, e.g., contact surface between the adjacent
beds/lithological layers.
: þ91 1332 273560.
ava).

All rights reserved.
2. Geometrical attributes of asymmetric folds

2.1. Fold shapes

Loudon (1964) and Whitten (1966, pp. 586e590) define fold
shapes by the statistical attributes, the fourth statistical moment, or
Kurtosis. The interlimb angle or tightness, and the attributes such
as dextral (z-shaped) or sinistral (s-shaped) shapes have long been
used for description of asymmetric fold shapes (Fleuty, 1964;
Ramsay, 1967, pp. 351e354). As two or more folds of equal inter-
limb angle can have different shapes, additional attributes are
necessary for their complete description (Ramsay, 1967, pp.
350e351). In the most comprehensive account till date, Twiss
(1988) shows that a complete description of an asymmetric fold
shape requires, at least, six parameters: the aspect ratio, the folding
angle (180� e interlimb angle), the bluntness of the closure, the two
inclination angles and the hinge tangent angle.

Existing methods for the shape analysis of individual limbs or
symmetric folds include the harmonic analysis (Chapple, 1968;
Stabler, 1968; Hudleston, 1973; Ramsay and Huber, 1987, p. 314;
Stowe, 1988), the conic section analysis (Aller et al., 2004), the
power function analysis (Bastida et al., 1999), the super ellipses
(Lisle, 1988) or the Bézier curve analysis (Srivastava and Lisle, 2004;
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Lisle et al., 2006). The results of limb-by-limb analysis can represent
an asymmetric fold by a tie-line that joins the two points on
a Cartesian plot, one corresponding to each fold limb (Fig. 15.14 in
Ramsay and Huber, 1987, p. 317; Hudleston, 1973). Distinction
between different populations of the asymmetric fold shapes is,
however, difficult on the plots that contain a large number of
intersecting tie-lines.
2.2. Degree of asymmetry

The degree of asymmetry, an important geometrical attribute of
asymmetric folds, has been used for interpretations regarding the
large scale fold geometry, and the buckling/bending moment ratio
during the process of buckle folding (Price, 1967; Price and
Cosgrove, 1990, p. 328). Loudon (1964) and Whitten (1966,
p. 588) define degree of asymmetry by the third statistical moment
or skewness. Several other definitions of the degree of asymmetry
exist. For example, Price (1967) defines the degree of asymmetry as
the limb length ratio. This definition, however, does not account for
the fold shape, because two asymmetric folds with the same limb
length ratio may have different shapes. Similarly, the degree of
asymmetry, expressed as the angle between bisector of the folding
angle (180� e interlimb angle) and the median trace (Twiss and
Moores, 1992, p. 207) also does not give any information about
the fold shape.

In yet another definition, the degree of asymmetry is the sum
of the differences in the aspect ratio Dsize and, the shape Dshape of
the two limbs (Tripathi and Gairola, 1999). The scope of this
definition is, however, limited because several combinations of
the two differences, Dsize and Dshape, may yield the same degree
of asymmetry. Bastida et al. (2005) improve this scheme by
defining the degree of asymmetry as the ratio of ‘shape asym-
metry’ and ‘size asymmetry’ and show that an asymmetric fold
shape can be represented as a point on the two-dimensional plot
of the two types of asymmetry. They define the ‘shape asym-
metry’ as the ratio of the normalised areas of the opposite limbs,
where the normalised area itself is the ratio of limb area and
rectangular area that bounds the limb, and the ‘size asymmetry’
as the amplitude ratio of the two limbs. We propose a simple and
rapid alternative method that traces the asymmetric fold shape
by a Bézier curve and represents it as a point in the two-
dimensional frame.
Fig. 1. (a) A cubic Bézier curve in the XeY Cartesian frame. Eight variables, namely, the coo
Parameter t varies from 0 at P0 to 1 at P3. P0 and P3 e End points, P1 and P2 e Control point
pinned at the origin (0, 0) and P1 is moved such that the Bézier handle P0P1 lies on the Y-axis.
P0 and P3 represent the width a and the lift b of the fold, respectively. c is the optimum le
3. The Bézier curve method

Bézier curves are named after Bézier (1966), who used them for
designing curvatures in the automobile industry. De Paor (1996)
first demonstrated the potential of Bézier curves in structural
geological applications, such as section construction and balancing,
modeling fault displacement problems and representation of
strain variations in thrust sheets and ductile shear zones. It is now
well established that the Bézier curve tool, available in most
computer graphics software, is a powerful tool for rapid and
accurate analysis of fold shapes (Wojtal and Hughes, 2001;
Srivastava and Lisle, 2004; Coelho et al., 2005; Lisle et al., 2006;
Liu et al., 2009a,b).
3.1. Rationale

A Bézier curve consists of one or more polynomial segments
such that each segment is defined by the following parametric
equations (Davies et al., 1986; De Paor, 1996; Srivastava and Lisle,
2004).

xðtÞ ¼ ð1� tÞ3x0 þ 3ð1� tÞ2tx1 þ 3ð1� tÞt2x2 þ t3 x3 (1)

yðtÞ ¼ ð1� tÞ3y0 þ 3ð1� tÞ2ty1 þ 3ð1� tÞt2y2 þ t3 y3 (2)

These equations are derived from the coordinates of the four
points: two end points P0 (x0, y0) and P3 (x3, y3), and two control
points, P1 (x1, y1), P2 (x2, y2) of the two Bézier handles, P0P1 and P2P3,
respectively. Parameter t varies from 0 to 1 from the first end point
P0 to the second end point P3, and it satisfies 0 < t < 1 at all other
points on the curve (Fig. 1a).

The shape of Bézier curve depends on eight variables, i.e., the
coordinates of the four points, P0, P1, P2, and P3 (Fig. 1a). Such
a curve cannot be directly represented as a point on the two-
dimensional XeY plane, because the number of variables is too
large. The number of variables can, however, be reduced by
defining a cubic Bézier curve in a XeY Cartesian frame such that:
(i) first Bézier handle, P0P1 lies on the Y-axis with its end point P0
and the control point P1 at (0, 0) and (0, c), respectively, (ii) the
control point P2 of second Bézier handle, P2P3 coincides with its end
point P3 (a, b). The length of second Bézier handle P2P3 is, therefore,
zero (Fig. 1b). With these constraints, the shape of Bézier curve
rdinates of four points P0 (x0, y0), P1 (x1, y1), P2 (x2, y2) and P3 (x3, y3) define the curve.
s. P0P1 and P2P3 are the two Bézier handles. (b) Reduction in number of variables. P0 is
P2 is dragged to P3 (a, b). The horizontal and the vertical separations between the points
ngth of the Bézier handle P0P1 that is required for simulation of the curve in (a).
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depends on only two parameters: (i) L, the ratio of length c of the
first Bézier handle and width a of the fold, L ¼ c/a, and (ii) R, the
ratio of lift b and width a of the fold, R ¼ b/a. As the procedure and
results of the method are independent of the absolute values of a,
b and c, we assume a to be of unit length. This simplification makes
L ¼ c and R ¼ b. The Bézier curve can now be described by the
following parametric equations:

xðtÞ ¼ 3ð1� tÞt2 þ t3 (3)

yðtÞ ¼ 3Lð1� tÞ2t þ 3Rð1� tÞt2 þ t3R; 0 < t < 1 (4)

For given values of L and R, equations (3) and (4) yield a unique
Bézier curve.
Fig. 2. Step-wise procedure for application of the Bézier curve method. (a) Imported imag
inflection point P0. (b) Rotation of the fold to make the tangent T vertical. Conversion of the P
dragged to P3, and P1 is moved until it lies on the Y-axis. (d) P1 is dragged along the Y-axis
horizontal and vertical separations between the points P0 and P3, and c is the ordinate of p
3.2. Procedure

The method requires: (i) a digital image of the profile section of
an asymmetric fold, and (ii) a personal computer with any graphics
software, such as CorelDraw, Adobe Illustrator or SmartDraw. Step-
by-step procedure of the shape analysis of an asymmetric fold trace
is as follows:

(i) Import the image of the given asymmetric fold into any
Graphics software that has the Bézier curve tool. Mark the
inflection points, P0 and P3 on the long and the short limb of
the fold, respectively, and draw the tangent T at the point P0
(Fig. 2a). Group all the objects, namely, the points P0 and P3,
the tangent T and the given fold image.
e of the given asymmetric fold. P0 and P3 are the inflection points. T e Tangent at the
0P3 line (dashed) to the curve mode displays two Bézier handles P0P1 and P2P3. (c) P2 is
until the Bézier curve between the points P0 and P3 fits the given fold. a and b are the
oint P1.
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(ii) Rotate the grouped objects in Fig. 2a such that the tangent T
lies on the vertically directed Y-axis (Fig. 2b).

Join the inflection points P0 and P3 by a straight line and convert
the line into curve mode by using the ‘to curve’ tool in the graphics
softwares. This step displays two Bézier handles, P0P1 and P2P3,
respectively (Fig. 2b).

(iii) Drag the control point P2 such that it coincides with the end
point P3, and the length of the Bézier handle P2P3 becomes
zero (Fig. 2c). Let the coordinates of the point P2 ¼ P3 be (a, b),
where a (width) and b (lift) are the horizontal separation and
the vertical separation between the two inflection points,
respectively (Fig. 2c).

(iv) While keeping the end point P0 fixed, move the control point
P1 until the Bézier handle P0P1 lies on the Y-axis (Fig. 2c). This
operation produces a Bézier curve (dashed curve in Fig. 2c).

(v) Drag the control point P1 along the Y-axis until the Bézier
curve, produced in the step-iv fits the given fold satisfactorily
(Fig. 2d). The length of the Bézier handle, P0P1 ¼ c controls the
shape of the given asymmetric fold (Fig. 2d).
Fig. 3. Computer graphics simulation of the asymmetric fold shapes. (a) and (b) The sine cur
of the symmetric fold, the sine curve in (a) by an angle, q ¼ 30� in anticlockwise sense. Refe
Rs ¼ 1.5 produces the asymmetric fold shape.
(vi) Determine the parameter L by dividing the length c of Bézier
handle P0P1 by a (Fig. 2d). Similarly, the second parameter R is
the ratio b/a (Fig. 2d).

The Cartesian plot of the two parameters L and R represents the
shape of the given asymmetric fold as a point.

4. Point representation

The validity of Bézier curve method has been tested on a large
number of computer simulated and natural folds. We elucidate
application of the method with the help of a few examples as
follows:

4.1. Computer simulated folds

We have simulated asymmetric fold shapes by rotation and
distortion of sine curve y ¼ Asinx and parabola y ¼ �4Ax2

(Fig. 3a,b). These two curves are successively rotated by angles
q ¼ 10�, 20�, 30�, 40�, 50�and 60� with respect to the horizontal
reference line. Each rotated curve is distorted successively by the
ve and the parabola that are used for simulation of asymmetric fold shapes. (c) Rotation
rence circle in black. (d) Distortion of image in (c) by the two-dimensional strain ratio



Fig. 4. Some examples of asymmetric fold shapes simulated from different combinations of rotation (q) and distortion (Rs) of the sine curve in Fig. 3a.

Fig. 5. Some examples of asymmetric fold shapes simulated from different combinations of rotation (q) and distortion (Rs) of the parabola in Fig. 3b.



Fig. 6. (a) and (b) Point representation of 48 asymmetric fold shapes obtained from the sine curve and parabola, respectively. Straight lines are the trajectories of points joining
equal angle of rotation (q), whereas curves are the trajectories of points joining equal value of the strain ratio (Rs).
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two-dimensional strain ratio Rs ¼ 1.5, 3.0, 4.5 and 6.0, respec-
tively, such that the maximum stretching direction is vertical in
each distortion. Each combination of the rotation angle q and the
distortion Rs yields a characteristic asymmetric fold shape. A
typical example of computer simulated asymmetric fold shape
that is obtained by rotation of the sine curve by q ¼ 30� and the
distortion of the rotated sine curve by the strain ratio Rs ¼ 1.5 is
given in Fig. 3c,d. The combinations of six rotations and four
distortions, each for the sine curve and the parabola, produce 48
asymmetric fold shapes (examples in Figs. 4 and 5). We have
tested the validity of the Bézier curve method on all the computer
simulated folds.

Test of Bézier curve method on the 48 graphically simulated
asymmetric folds shows that each fold shape plots as a unique point
Fig. 7. (a) Computer graphics simulation of 19 asymmetric fold shapes by varying the parame
0.3, 0.56, 0.7, 0.9 and 1.0. Folds 1e19 in (a) correspond to black dots in (b) The tightness of
on the two-dimensional LeR frame (Fig. 6a,b). Two sets of trajec-
tories can be drawn through these plots: (i) the best-fit straight
lines through the points of equal rotation angle q, and (ii) the best-
fit curves through the points of equal distortion Rs (Fig. 6a,b). Each
point on the LeR plot represents an asymmetric fold shape that can
be simulated by the unique pair of Rs and q values. In addition, the L
or R values also reflect the tightness of the asymmetric fold shapes.
To illustrate this, we have calculated the interlimb angles of
different folds and have studied their variations with R and L. We
have used the parametrically generated values of x and y from
equations (3) and (4) to calculate the slope at the inflection points
of the folds by numerical differentiation and, thus, the interlimb
angle. The folds assume a progressively tighter shape with increase
in the L and decrease in the R values (Figs. 7 a,b and 8 a,b).
ter L at constant R ¼ 0.56. (b) Relationship between L and the interlimb angle at R ¼ 0.1,
folds increases with progressive increase in L.



Fig. 8. (a) Computer graphics simulation of 21 asymmetric fold shapes by varying the parameter R at constant L ¼ 1.85. (b) Relationship between R and the interlimb angle at L ¼ 0.1,
1.0, 1.85, 3.0, 5.0 and 7.0. Folds become progressively open with progressive increase in R. Folds 1e21 in (a) correspond to black dots in (b).
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4.2. Natural folds

We test the new method on a natural example that consists of
seven asymmetric folds, AeG, in the psammiteepelite layers of the
Moine Series, Mull, Scotland (Fig. 9a; taken from Fig. 15.15 in
Ramsay and Huber, 1987, p. 318). We have particularly selected this
example so that results of the fold shape analysis by the proposed
method can be directly compared with the published results
obtained from limb-by-limb analysis of these folds (Ramsay and
Huber, 1987, p. 326; Fig. 5b in Srivastava and Lisle, 2004).

The results show two distinct shape clusters that consist of folds
AeE and FeG, respectively (Fig. 9b). These results are consistent
with those obtained by the limb-by-limb analysis of these folds by
other methods (Ramsay and Huber, 1987, p. 326; Fig. 5b in
Srivastava and Lisle, 2004). Besides, our results reveal that the R
parameter is greater for cluster-II folds than that for cluster-I folds,
whereas the difference in L parameter of the two clusters is rather
Fig. 9. An example of application of the method on natural folds. (a) Multilayer folds in
Psammitic and pelitic layers in grey and white, respectively. (b) Point representation of seve
sharp crested and tighter compared to those in cluster-II.
small. These variations, when interpreted with reference to the
relationships between the interlimb angle and the parameters L
and R (Figs. 7 and 8), imply that the cluster-I folds are tighter and
more sharp crested than relatively open cluster-II folds with broad
hinge zones.

5. Merits and limitations of the new method

The Bézier curve method requires only two parameters, L and R,
for tracing a complete asymmetric fold shape. It is noteworthy that
parametric equations (3) and (4) produce different asymmetric fold
shapes for different values L and/or R. The method, therefore,
provides a mathematical basis for the unique point representation
of a given asymmetric fold shape. An additional merit of the
method is that the fold shape can be traced back by substitution of
the coordinates of the representative point (L, R) in equations (3)
and (4), respectively. For example, the substitution of the
the Moine Series of Mull, Northern Scotland (after Ramsay and Huber, 1987, p. 318).
n folds AeG in (a). The plots depict two distinct clusters, I and II. Folds in cluster-I are



Fig. 10. An example for retrieving the fold shape from the point representation on the
LeR plane. The fold shape has been obtained by substituting L ¼ 4 and R ¼ 1 in
equations (3) and (4) in the text.
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coordinates, say (4, 1) of a point in the equations (3) and (4) yields
a unique fold shape (Fig. 10). The main limitation of the method is
that it cannot be applied to some special fold shapes, e.g., double
hinged folds, kink folds or elliptical folds due to difficulty in fitting
Bézier curve on these shapes. Furthermore, the fit of Bézier curves
on a few asymmetric folds is found to be imperfect in practice.

6. Conclusions

The Bézier curve method is a rapid and easy-to-use technique
for the shape analysis of asymmetric folds. It shows that an
asymmetric fold shape is a function of the two parameters, L and R
that plot as a point on the two-dimensional Cartesian frame (Fig. 6a,
b). Tests of numerous graphically simulated and natural fold
examples validate the applicability of the method in the shape
analysis and point representation of asymmetric folds.
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